If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+16y=20
We move all terms to the left:
y^2+16y-(20)=0
a = 1; b = 16; c = -20;
Δ = b2-4ac
Δ = 162-4·1·(-20)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{21}}{2*1}=\frac{-16-4\sqrt{21}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{21}}{2*1}=\frac{-16+4\sqrt{21}}{2} $
| 5/7x=2/3 | | -1.65=x-0.25 | | 1.65=x-3 | | X^2—4.5x-2.5=0 | | x-5/3-x-4/2=4-x/5 | | 10x-0.5=0.75 | | u+8.7=1.4 | | 10x-1/2=3/4 | | 6.50x+10(454-x)=3437.50 | | 1.65=x-0.25 | | 5–3(5x+2)=4(7–3x)+1 | | 1/6r-(-1/3r)=-3 | | -20=0.6x-0.8x | | c+20=7c-49 | | 123=-3r+3(7r-1) | | 8(5-x)=22 | | -8×6-3×14=12x+6x | | x–5-x–4=4–x─1 325 | | -8(u+1=2(1-4u)-9 | | −7x+4x=−6 | | -8y+40=8(y-7) | | F(m)=2m^2+28m+100 | | f(×)=300(1+0.03) | | 5(u-9)=-40 | | 12+2(n-3)=36 | | 6r-54=7r+70 | | 1-6w=13 | | 6x+11=35,x= | | 16-15x=-4(7x+4)-4(-5-3x) | | 11x–14=3x+2 | | 2x–(3x–6)=3x–10 | | (x+40)=(3x+10) |